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1. Introduction

Children acquiring the morpho-phonology of their language face multiple non-trivial learn-
ing challenges. In this paper we focus on several aspects of phonological learning that we
take to be particularly significant: learning from distributional evidence alone, dependen-
cies between phonology and morphology, abstract underlying representations (URs), op-
tionality, and opacity. The remainder of the introduction reviews these aspects of phonolog-
ical learning and discusses the challenges that they pose. While there is more to learning in
phonology than these challenges, we take it that any theory of learning in phonology should
at least handle this list. Our goal in this paper is to show how an approach to phonological
learning based on the principle of Minimum Description Length (MDL; Rissanen 1978)
handles all the learning challenges in a simple, unified way. To our knowledge this is the
only learning approach that handles all these learning challenges.

Challenge I: Learning from distributional evidence. We take the primary linguistic
data available to the child to consist of surface forms alone, without systematic negative
evidence, direct information about underlying representations, or other kinds of assistance.
Some support for this view comes from experimental work such as White et al. 2008,
which provides evidence for children’s ability to acquire phonological alternations from
distributional evidence.

Challenge II: Dependencies between morphology and phonology. We assume that
children can acquire their phonological knowledge even in the face of nontrivial dependen-
cies between morphological segmentation and phonological processes. Front-back vowel
harmony (VH) in Turkish illustrates this challenge. Focusing on stems such as /ip/ ‘rope’
and /kIz/ ‘girl’ and on the suffixes for the genitive and the plural, the child’s input might
consist of surface forms such as [ipler], [kIzlar], [ipin], and [kIzIn]. If the child already
knows that VH applies within such forms, they can undo it and reason that [ler] and [lar]
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might be underlyingly identical (and similarly for [in] and [In]). This, in turn, can guide the
child toward the correct morphological segmentation of the forms:

(1) ‘rope’ ‘girl’
Plural ip-ler kIz-lar

Genitive ip-in kIz-In

Similarly, if the child already knows the morphological decomposition of these forms,
they can reason about the relation of [ler] and [lar] (and similarly for [in] and [In]), which
can guide the child toward a discovery of VH. However, if the child does not yet know
either about the process of vowel harmony or about the morphological decomposition of
the surface forms, they will face the challenge of discovering both despite the bidirectional
dependencies between the two: without knowledge of VH, morphological segmentation
seems challenging, and without knowledge of morphological segmentation, VH (which
applies regularly across morpheme boundaries but not morpheme-internally) will be harder
to discover.

Challenge III: Abstract URs. Abstract URs are URs that differ from their surface
forms despite insufficient evidence for the discrepancy from alternations. The extent to
which URs may be abstract was a matter of much debate in early generative phonology.
More recently, abstractness has been argued for by Alderete and Tesar (2002), McCarthy
(2005), and Nevins and Vaux (2007), among others (see also discussion in Krämer 2012).
Here we will assume that abstractness is possible, illustrating with a schematic example
from Alderete and Tesar (2002), based on the interaction of stress and epenthesis in Yimas.
In this example, stress in bisyllabic words is initial but can be pen-initial if the first vowel
is [i], as in the following table:

(2) Initial vowel = i Initial vowel = a
Initial stress ṕikut pákut

Pen-initial stress pikút *pakút

A familiar kind of analysis would posit a pattern of initial stress, where an unstressed initial
[i] is always epenthetic:

(3) /pkut/→ |pkút| → [pikút]

According to Alderete and Tesar (2002), however, this generalization is acquired without
support from alternations.

Challenge IV: Optionality. The acquired phonological grammar should capture speak-
ers’ knowledge not just in simple cases but also in more complex patterns, such as option-
ality. An example of optionality is the process of liquid deletion in French, analyzed by
Dell (1981), which allows a word-final liquid to optionally delete in certain environments
(as in [tabl]∼[tab] for ‘table’). Optionality, as in Dell’s example, poses various difficulties
to the learner. One difficulty is that optionality obscures the evidence for the application of
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a phonological process. For example, the presence of surface forms such as [tabl] can make
it hard for the learner to conclude that final liquids may delete. Another challenge concerns
the environment of application: even if the learner concludes that final liquids delete, what
will tell them that this process can only apply after an obstruent? See Dell 1981 and Rasin
et al. 2018 for further discussion of this challenge.

Challenge V: Opacity. An example of opacity is the counterfeeding interaction be-
tween nasal deletion and cluster simplification in Catalan (Mascaró 1976), which we present
here in a simplified form. As the following illustrates, word-final nasals delete in certain
contexts in Catalan, as do post-nasal word-final stops, but while the latter process creates
an appropriate environment for the former, cluster simplification does not lead to nasal
deletion:

(4) kuźi ∼ kuźin-s ‘cousin.SG ∼ cousin.PL’
k@lén ∼ k@lént-@ ‘hot.MASC ∼ hot.FEM’

As with optionality, opaque interactions pose a learning challenge by obscuring the
form of a phonological process and its environment of application. In the case of Catalan,
the learning challenge comes from surface forms such as [k@lén] that can confuse a naive
attempt to learn that word-final nasals delete.

The remainder of the paper is structured as follows. First, in section 2, we introduce
the MDL principle and present a concrete learning algorithm that uses it as an evaluation
metric. Then, in section 3, we present simulation results illustrating the ability of the MDL
learner to address the learning challenges described above in a simple, unified way. In
section 4 we discuss previous proposals from the literature and note that they have not
been able to go as far in addressing these learning challenges. Section 5 concludes.

2. An MDL learner

2.1 The MDL principle

MDL is an evaluation criterion that balances two competing factors. One factor is the sim-
plicity of the grammar. We use |G| for the length of the grammar G in bits. Minimizing
|G|, as in the evaluation metric of SPE (Chomsky and Halle 1968), prefers simple but often
overly general grammars. The second factor that MDL balances is the tightness of fit of
the grammar G to the data D. We use D : G for the shortest encoding of D using G, and we
use |D : G| for the length of D : G in bits. Minimizing |D : G|, roughly as in the proposals
of Dell (1981) and Wexler and Manzini (1987), leads to grammars that fit the data well but
are often overly specific. By balancing |G| and |D : G| against each other, MDL attempts
to find a reasonably simple grammar that fits the data reasonably well. The criterion can be
stated as follows:

(5) MDL EVALUATION METRIC: If G and G′ can both generate the data D, and if
|G|+ |D : G|< |G′|+ |D : G′|, prefer G to G′
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Before discussing our concrete MDL learner, which will assume rule-based phonology, we
will first explain why MDL supports the induction of a segmented lexicon and phonological
rules from distributional evidence using a toy example.1 Consider first segmentation. The
MDL metric in (5) allows the learner to discover the segmentation of words into stems
and affixes (see de Marcken 1996, Goldsmith 2006). If the surface forms are generated
from, e.g., 8 different stems (e.g., /dok/, /kab/, etc.) and 4 different suffixes (e.g., /za/,
/ti/, etc.), a naive grammar G1 for the language will store all the different 8× 4 = 32
surface forms in the lexicon (each of which costing its length times lg |Σ| bits, where Σ is
the alphabet in which the lexicon is written and |Σ| its cardinality). Specifying any given
surface form (for the purposes of constructing D : G1) will require lg32 = 5 bits. A less
naive grammar, call it G2, will store the stems and the suffixes separately. This will amount
to just 8+4 = 12 different entries (which, in addition, are shorter than those in the lexicon
of |G1|). Specifying any given surface form will require choosing a stem and a suffix. The
former choice, from among 8 possibilities, costs lg8 = 3 bits, and the latter, from among
4 possibilities, costs lg4 = 2 bits. In total, then, specifying a surface form using G2 will
require 5 bits: the same as with G1. Consequently, |D : G1| = |D : G2|. Since |G2| < |G1|,
(5) will lead the learner to prefer G2 to G1, which seems intuitively correct.

MDL also enables the learner to acquire phonological processes (e.g., Goldwater and
Johnson 2004, and Rasin et al. 2018). If the language just discussed also has a process of
regressive voicing assimilation across morphemes, the surface forms will seem to involve
twice the actual number of stems (e.g., [dog] before [za] and [dok] before [ti]). Using (5),
the learner will reject a naive encoding of this kind (since the storage of two versions of
each stem is costly) in favor of one where there is just one variant for each stem, along with
a rule of voicing assimilation (since the savings obtained by storing just one form for each
stem outweigh the costs of adding the relevant phonological rule).

In section 2.2 we will present a concrete MDL learner, and in section 3 we will present
simulations for each of the challenges discussed in the introduction illustrating the ability
of an implemented MDL learner to address these challenges in practice.

2.2 A concrete MDL learner

In this section we present the rule-based MDL learning algorithm we use for the simula-
tions in this paper.2 The algorithm, which was proposed by Rasin et al. (2018), has the
following properties. First, the learner is assumed to be equipped with a hypothesis space
consisting of grammars with a lexicon and a list of ordered rewrite rules. The lexicon is
represented as a Hidden Markov Model, as in (6), and the rules are of the form given in (7).

1For further discussion of MDL – and the closely related Bayesian approach to learning – in the context
of various grammar induction tasks, see Horning 1969, Berwick 1982, Rissanen and Ristad 1994, Stolcke
1994, de Marcken 1996, Brent 1999, and Clark 2001, among others. For discussion of possible motivations
for MDL see Katzir 2014, Katzir, Lan, and Peled 2020, and Rasin and Katzir 2020.

2The code for the learner is available at https://github.com/taucompling/morphophonology spe.

https://github.com/taucompling/morphophonology_spe
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(6) A lexicon (represented as a Hidden Markov Model)

(7) Ordered rules
A→ B/C D (optional?)

The MDL metric assigns the score |G|+ |D : G| to each grammar G in the hypothesis
space. To measure the size of the grammar, |G|, we sum the size of the lexicon and the
size of the list of rules. To see how rules are measured, consider the vowel harmony rule
in (8). The rule, given first in textbook notation (8a), is converted into a string (8b). Then,
each symbol in the string receives a cost of lgn, where n is the number of symbols that can
be used in writing rules. To measure the size of the lexicon, the HMM is converted into a
string in a similar fashion, as in (9). Here, the cost of each phonological segment in lexical
items is calculated relative to a language-specific alphabet, which is measured in addition
to the HMM itself. To measure |D : G|, we calculate the amount of information needed
to describe the derivation of every surface form given the grammar, as detailed in Rasin
et al. 2018, which also discusses the details of the search for the optimal grammar using a
genetic algorithm.

(8) Measuring a rule (example: vowel harmony)

a.
[
−cons

]
→

[
−back

]
/

[
+cons

]∗[−cons
−back

]
(optional)

b. − cons#rc−back#rc#rc + cons∗#b− cons# f −back#rc1#rc

(9) Measuring a lexicon (example: string representation of the HMM in (6)):

q0q1#S#w#wq1q2q f #Sdog#wkat#w#wq2q f #Sz#w#w

3. Simulations

3.1 Turkish VH

The dataset for this simulation was modeled after front-back VH in Turkish and illustrates
the challenge of learning in the face of dependencies between morphology and phonology.3

3VH illustrates a further learning challenge: that of learning unbounded dependencies. Specifically, VH
often applies across several intervening consonants, thus posing a problem for phonological learners that are
limited to small, local contexts of fixed size. Unsupervised learners that can capture long-distance dependen-
cies, such as Hayes and Wilson 2008 or Heinz 2010, are phonotactic learners that are not yet integrated within
a full morpho-phonological learner. Moreover, as noted by Hayes and Wilson (2008, p. 402), languages with
many disharmonic roots like Turkish (e.g., backness mismatch in mezar(-lar), hotel(-ler)) pose a problem for
attempts to acquire VH using a phonotactic learner. The MDL learner presented here does not assume an
upper bound on the size of contexts of application of phonological rules and is therefore able to acquire VH
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The learner’s task was to segment the data into morphemes and acquire both a lexicon of
URs and a rule of VH. The data were generated by taking all combinations of 23 Turkish
nouns (e.g., kent, jIl) and 10 suffixes (e.g., -ler/-lar, -in/-In) and randomly removing 10
words from the result, a total of 220 words. Then, a rule of progressive front-back VH
was applied to the words. The words were presented to the learner as unsegmented strings,
without any morphology (e.g., [kentler], [jIllar]).

The learner converged on a hypothesis with a VH rule that applies in all appropriate
places and a lexicon in which each pair (e.g., -ler/-lar) is represented with a single UR:

(10) Final grammar:

•Lexicon:

–Stems = {kent, jIl, güz, tuz . . .};
–Suffixes = {ler, in, ten, siz, . . .}

•Rules:
[
+syll

]
→

[
+back

]
/

[
+back
+cont

][
−syll

]∗ (obligatory)

•Description length: |G|+ |D:G|= 872.03+17,260.08 = 18,132.11

To illustrate how MDL leads to the learner’s success, we can compare the final grammar
to alternative grammars in the hypothesis space in terms of description length. Consider,
for example, a naive hypothesis that simply memorizes the data, has no phonological rules,
and performs no segmentation:

(11) Naive grammar:

•Lexicon: {kentler, tuzlar, . . .}
•Rules: /0

•Description length: |G|+ |D:G|= 6,350.62+17,118.99 = 23,469.62

In this naive hypothesis, the lexicon is highly complex, as it stores every surface form
without segmentation. The size of its grammar, |G|, is thus significantly larger than the
size of the final grammar (6,350.62 versus 872.03). Even though the native hypothesis is
missing a rule, this minor saving is offset by the dramatic increase to the size of the lexicon.
In terms of |D:G|, the naive hypothesis is slightly better (17,118.99 versus 17,260.08), as
it can generate nothing more than the observed data (the final grammar can additionally
generate the 10 morpheme combinations that have been randomly removed). Overall, the
size of its lexicon makes the naive hypothesis lose decisively to the final grammar in terms
of description length (23,469.62 versus 18,132.11).

Another hypothesis to consider is the hypothesis that segments each word into mor-
phemes but does not learn the VH rule, and thus stores two variants of each suffix, a back
variant and a front variant:

despite its non-locality. It can also, in principle, deal with disharmonic roots (though, in this simulation, our
dataset did not include such roots; see below other simulations where non-surface-true generalizations are
learned).
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(12) Grammar with segmentation but without VH:

•Lexicon:

–Stems = {kent, jIl, güz, tuz . . .};
–Suffixes = {ler, lar, in, 1n, . . .}

•Rules: /0

•Description length: |G|+ |D:G|= 938.07+19,297.28 = 20,235.35

Here, both |G| and |D:G| are worse than in the final hypothesis. |G| is worse (938.07 versus
872.03) because of the duplication of each suffix in the lexicon, which could have been
avoided if the VH rule had been learned. |D:G| is worse (19,297.28 versus 17,260.08) be-
cause this hypothesis can generate any combination of stems and suffixes, including com-
binations with backness mismaches (e.g., kentlar), and this over-generation translates into
a longer description of the observed data. Since this hypothesis loses to the final grammar
on each of |G| and |D:G|, it also loses overall.

3.2 Abstract URs

The next simulation was designed to test the learner on the problem of abstract URs. Here
we did not use the stress-epenthesis interaction described above but rather tested the learner
on a simplified pattern of complementary distribution between aspirated and unaspirated
stops, modeled after aspiration in English. In this simplified pattern, aspiration (represented
as a separate segment [h] rather than a feature) occurs between a voiceless stop and a fol-
lowing vowel, but never elsewhere. This pattern by no means requires an analysis in terms
of abstract URs, but a grammar with abstract URs is nevertheless what MDL will lead the
child to: instances of aspiration, which can be predicted by a simple rule, will be removed
from the lexicon even in the absence of direct evidence from alternations because removing
information from the lexicon makes it simpler to describe. Note that the logic in this case
is similar to the case of the stress-epenthesis interaction discussed above, where abstract
URs could be reached by removing predictable vowels from the lexicon and inserting them
through a rule of epenthesis. The aspiration pattern is thus a simple example that illustrates
the ability of MDL to deal with abstract URs more generally.

The dataset for this simulation consisted of 10 words, given in (13).

(13) ithik, thatkha, thatthat, ikhak, khikthak, khathiit, ithak, thikhiat, thakhiit, khikhi

The result was the desired grammar in which aspiration is completely absent from the
lexicon and is inserted by an aspiration rule. In addition, aspiration was removed from the
alphabet in which the lexicon is written, meaning that aspiration cannot be used in URs
at all. Given the prohibition against underlying aspiration, aspiration can only be found on
the surface if it is derived from the aspiration rule, but it cannot surface elsewhere.

(14) Final grammar:
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•Lexicon (no /h/): {ikak, itak, itik, katiit, kiki, kiktak, takiit, tatka, tattat, tikiat}
•Rules: /0→

[
+asp

]
/
[
+stop

] [
−cons

]
•Description length: |G|+ |D:G|= 220.4+3,321.93 = 3,542.33

3.3 French optionality

The next simulation was designed to test the learner on optionality in French, where liquids
are optionally deleted word-finally after an obstruent. The dataset consisted of 91 words,
a sample of which is given below. Note that the learner is not provided with information
about lexical relatedness of surface forms such as [tabl] and [tab] and needs to discover
such information as part of the learning task.

(15) tab, tabl, final, aktif, parl, lub, lubl, tap, tapl, ...

The result is the grammar in (16). The learner correctly collapsed pairs of surface forms
into a single UR and learned the restricted optional liquid deletion rule.

(16) Final grammar:

•Lexicon: {tabl, final, aktif, parl, lubl, tapl, . . .}
•Rules: [+liquid]→ /0/[−son] (optional)

•Description length: |G|+ |D:G|= 31,936.09+30,153.81 = 62,089.91

To see why MDL succeeds on restricted optionality, it would be useful to compare the
final grammar to an alternative where the optional liquid-deletion rule does not have a left
context (this alternative grammar is otherwise identical to the final grammar):

(17) Alternative grammar:

•Lexicon: {tabl, final, aktif, parl, lubl, tapl, . . .}
•Rules: [+liquid]→ /0/ (optional)

•Description length: |G|+ |D:G|= 31,928.47+33,003.81 = 64,932.29

In this alternative grammar, |G| is slightly simpler (31,928.47 versus 31,936.09) because of
the omission of the left context of the rule. However, |D:G| is significantly larger (33,003.81
versus 30,153.81): since the context-free rule can optionally apply to any underlying liquid,
the grammar can generate many additional surface forms with missing liquids (e.g., from
the UR /lubl/, the grammar generates the four surface forms [lubl], [ubl], [lub], and [ub]).
This over-generation translates into a longer |D:G|, which causes the alternative grammar
to lose based on considerations of restrictiveness.
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3.4 Counterfeeding opacity in Catalan

Our next dataset was designed to test the learner on the problem of counterfeeding opacity.
We used two rules modeled after a simplified version of final-nasal deletion and cluster
simplification in Catalan. We generated 65 words by creating all combinations of 13 stems
and 5 suffixes (taken from a Catalan dictionary) and applying final-nasal deletion and clus-
ter simplification, in this order (18). A sample of the data is given in (19).

(18) Rules:

a. Delete a nasal word-finally.
b. Delete a word-final stop following a nasal.

(19) stem\suffix /0 -s -et · · ·
kalent kalen kalents kalentet
kuzin kuzi kuzins kuzinet
· · ·

The learner converged on a segmented lexicon and on the two rules – final-nasal dele-
tion and cluster simplification – and their correct ordering, as in (20).

(20) Final grammar:

•Lexicon:

–Stems = {kuzin, kalent, blank, kasa, . . .}
–Suffixes = {s, et, ik, a, . . .}

•Rules:

–
[
+nasal

]
→ /0/ #

–
[
−cont

]
→ /0/

[
−nasal

]
#

•Description length: |G|+ |D:G|= 562.2+3,914.54 = 4,476.74

4. Previous work on learning in phonology

We presented a learner that uses the MDL evaluation metric, which minimizes |G|+ |D:G|,
to jointly learn morphology and phonology within a rule-based framework. This learner
is fully distributional, working from unanalyzed surface forms alone – without access to
paradigms or negative evidence – to obtain the URs in the lexicon, the possible morpho-
logical combinations, and the ordered phonological rules. It acquires both allophonic rules
and alternations and handles both optionality and rule interaction, including opacity.

In this section we review prominent proposals from past work on learning in phonol-
ogy and show that they have not gone as far in terms of addressing these challenges: they
either do not work with what we take to be the primary linguistic data (e.g., they assume
that the child is given information about URs), or they do not acquire an important part
of the phonological grammar (e.g., they cannot deal with opacity). We will focus on five
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Distributional Simultaneous Abstract
Theory ↓ evidence segmentation Opacity Optionality URs
1) Constraint reranking 8 8 ? 3 8

2) Reranking + Free Ride 8 8 ? 3 8

3) MaxEnt + OT 8 8 3 ? ?
4) Dist. alt. learner 3 8 8 8 8

5) MaxLikelihood + OT * (see discussion below)
6) Lexicon Entropy * (see discussion below)

Figure 1: Some prominent proposals from past work on learning in phonology and their ability to address
five learning challenges.

components of the learning challenge: learning from distributional evidence alone, learn-
ing segmentation simultaneously with phonology, learning opacity, learning optionality,
and learning abstract URs. Each of the learners we discuss fails on at least one of those
components, as summarized in Figure 1 (and as discussed in the rest of this section).

We first consider constraint reranking algorithms (row 1 in Figure 1), a family of learn-
ing algorithms for OT that include the proposals by Tesar (1995, 2014), Tesar and Smolen-
sky (1998), Boersma and Hayes (2001), Prince and Tesar (2004), and much related work.
These proposals assume that URs are given to the learner in advance or that the learner is
exposed to surface forms already segmented into morphemes, along with the information
of which surface morphemes come from the same UR. Therefore, these works fail on the
challenge of learning from distributional evidence and the challenge of learning segmenta-
tion simultaneously with the phonology.

Another shortcoming of the constraint-reranking proposals just mentioned is that they
assume that, in the absence of direct evidence from alternations, URs are identical to their
corresponding surface forms, Hence, they do not address the challenge of learning abstract
URs. An attempt to address this problem was made by McCarthy (2005), who proposed to
extend constraint reranking algorithms with the Free Ride Principle, a learning principle
that aims to deal with some cases of abstract URs (row 2 in Figure 1). This principle
allows using information from alternations to infer non-identical URs for non-alternating
forms. While addressing some cases of abstract-UR learning, McCarthy’s algorithm does
not offer constraint reranking algorithms a handle on cases of abstract URs where there is
no supporting evidence from alternations at all, as in Alderete and Tesar (2002)’s stress-
epenthesis example. See Rasin and Katzir 2018 for further discussion.

Another family of learners in the OT literature are the so-called MaxEnt learners (Gold-
water and Johnson 2004, Nazarov and Pater 2017, and O’Hara 2017, among others), which
rely on the principle of Maximum Entropy as an evaluation metric (row 3 in Figure 1).
These learners receive morphologically-segmented surface forms, as well as information
about which surface morphemes come from the same UR. Hence, like constraint rerank-
ing algorithms, they do not address the challenges of learning from distributional evidence
alone and learning segmentation simultaneously with the phonology.

Similarly to the present proposal, the distributional alternation learner of Calamaro and
Jarosz (2015) learns phonological rules in a fully distributional way (row 4 in Figure 1).
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The proposal extends the allophonic learner of Peperkamp et al. (2006), which detects
maximally dissimilar surface contexts as hints for allophonic distribution. Calamaro and
Jarosz (2015) extend Peperkamp et al.’s model to account for neutralization rules which
lead to the occurrence of alternating segments in overlapping contexts. To account for this
challenge, Calamaro and Jarosz compute surface dissimilarity scores that are contextual
(for a given context X Y and two potential alternants A and B, they compute a dissimilarity
score for the triple < X Y , A, B > by comparing the probability of the context X Y
given A and given B). Calamaro and Jarosz’s model faces two challenges that seem hard
to address within the framework of distribution comparison that they adopt. First, their
model does not handle rule orderings. This gap is particularly difficult to bridge in the
case of opaque rule interactions, where surface distributions obscure the correct context for
rule application. The second challenge concerns optionality. When a rule is optional, the
distribution of A and B can be similar in all contexts, so a dissimilarity detector will fail to
identify the rule.

Other learners close to our goals include Jarosz (2006)’s Maximum Likelihood OT
learner and Riggle (2006)’s Lexicon Entropy OT learner (rows 5 and 6 in Figure 1). Both
learners rely on evaluation metrics rather than on a procedural approach to acquire an OT
ranking and URs. Differently from MDL, however, these evaluation metrics do not balance
economy and restrictiveness and thus lead to over-generalization and under-generalization
problems. These problems for Maximum Likelihood and Lexicon Entropy have been dis-
cussed in detail in Rasin and Katzir 2016.

Of the other learners proposed in the literature, our learner is closest to the rule-based
learners proposed by Goldwater and Johnson (2004), Goldsmith (2006), Naradowsky and
Goldwater (2009), and the OT learner by Rasin and Katzir (2016), all of which are fully
distributional phonological learners that rely on the same kind of balanced evaluation met-
ric as the present paper.4 At present, the three rule-based learners can acquire rules only
at morpheme boundaries and generalize only with respect to X Y and not with respect to
A and B.5 They are also aimed at obligatory rules and do not handle rule interaction. The
constraint-based learner has not yet been shown to acquire opacity. One way of interpreting
our simulations above is as showing that the limitations of all these balanced distributional
learners are not essential within this framework and that MDL can support the acquisition
of allophony, generalizations over both the context and the change (in the case of rule-based
phonology), optionality, and opacity.

5. Discussion

We presented an MDL-based learner for the unsupervised learning of rule-based morpho-
phonological grammars. The generality of the MDL metric has allowed the learner to si-

4The learner of Naradowsky and Goldwater (2009) targets orthographic rules rather than phonology, but
the difference is immaterial.

Other balanced learners proposed in the literature, which are not fully distributional, include those of
Cotterell et al. (2015) and Ellis and O’Donnell (2017).

5By limiting the kinds of rule that can be learned, these learners are similar to the procedural rule-based
learners of Johnson (1984) and Albright and Hayes (2002).
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multaneously perform morphological segmentation and acquire complete grammars, in-
cluding URs and ordered rules, and including transparent and opaque rule interactions, as
well as optional rules. Previous proposals have not gone as far because they either do not
work with what we take to be the primary linguistic data or do not acquire important parts of
a descriptively-adequate grammar. In particular, by learning from distributional evidence
alone, the learner differs from many proposals in the literature on phonological learning
which assume that the learner is given paradigmatic information, information about URs,
or even the URs themselves. The ability of our learner to acquire opaque rule interactions
and optional rules distinguishes it from other learners that are limited to transparent process
interactions or deterministic processes. To our knowledge, this makes the present learner
the first distributional learner that can acquire a comprehensive morpho-phonological sys-
tem with the structure proposed in the phonological literature.
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